home *** CD-ROM | disk | FTP | other *** search
- #include "algebra3.H"
- #include <ctype.h>
-
- /****************************************************************
- * *
- * vec2 Member functions *
- * *
- ****************************************************************/
-
- // CONSTRUCTORS
-
- vec2::vec2() {}
-
- vec2::vec2(const double x, const double y)
- { n[VX] = x; n[VY] = y; }
-
- vec2::vec2(const double d)
- { n[VX] = n[VY] = d; }
-
- vec2::vec2(const vec2& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; }
-
- vec2::vec2(const vec3& v) // it is up to caller to avoid divide-by-zero
- { n[VX] = v.n[VX]/v.n[VZ]; n[VY] = v.n[VY]/v.n[VZ]; };
-
- vec2::vec2(const vec3& v, int dropAxis) {
- switch (dropAxis) {
- case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; break;
- case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; break;
- default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; break;
- }
- }
-
-
- // ASSIGNMENT OPERATORS
-
- vec2& vec2::operator = (const vec2& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; return *this; }
-
- vec2& vec2::operator += ( const vec2& v )
- { n[VX] += v.n[VX]; n[VY] += v.n[VY]; return *this; }
-
- vec2& vec2::operator -= ( const vec2& v )
- { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; return *this; }
-
- vec2& vec2::operator *= ( const double d )
- { n[VX] *= d; n[VY] *= d; return *this; }
-
- vec2& vec2::operator /= ( const double d )
- { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; return *this; }
-
- double& vec2::operator [] ( int i) {
- if (i < VX || i > VY)
- V_ERROR("vec2 [] operator: illegal access; index = " << i << '\n')
- return n[i];
- }
-
-
- // SPECIAL FUNCTIONS
-
- double vec2::length()
- { return sqrt(length2()); }
-
- double vec2::length2()
- { return n[VX]*n[VX] + n[VY]*n[VY]; }
-
- vec2& vec2::normalize() // it is up to caller to avoid divide-by-zero
- { *this /= length(); return *this; }
-
- vec2& vec2::apply(V_FCT_PTR fct)
- { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); return *this; }
-
-
- // FRIENDS
-
- vec2 operator - (const vec2& a)
- { return vec2(-a.n[VX],-a.n[VY]); }
-
- vec2 operator + (const vec2& a, const vec2& b)
- { return vec2(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY]); }
-
- vec2 operator - (const vec2& a, const vec2& b)
- { return vec2(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY]); }
-
- vec2 operator * (const vec2& a, const double d)
- { return vec2(d*a.n[VX], d*a.n[VY]); }
-
- vec2 operator * (const double d, const vec2& a)
- { return a*d; }
-
- vec2 operator * (const mat3& a, const vec2& v) {
- vec3 av;
-
- av.n[VX] = a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ];
- av.n[VY] = a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ];
- av.n[VZ] = a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ];
- return av;
- }
-
- vec2 operator * (const vec2& v, mat3& a)
- { return a.transpose() * v; }
-
- double operator * (const vec2& a, const vec2& b)
- { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY]); }
-
- vec2 operator / (const vec2& a, const double d)
- { double d_inv = 1./d; return vec2(a.n[VX]*d_inv, a.n[VY]*d_inv); }
-
- vec3 operator ^ (const vec2& a, const vec2& b)
- { return vec3(0.0, 0.0, a.n[VX] * b.n[VY] - b.n[VX] * a.n[VY]); }
-
- int operator == (const vec2& a, const vec2& b)
- { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]); }
-
- int operator != (const vec2& a, const vec2& b)
- { return !(a == b); }
-
- ostream& operator << (ostream& s, vec2& v)
- { return s << "| " << v.n[VX] << ' ' << v.n[VY] << " |"; }
-
- istream& operator >> (istream& s, vec2& v) {
- vec2 v_tmp;
- char c = ' ';
-
- while (isspace(c))
- s >> c;
- // The vectors can be formatted either as x y or | x y |
- if (c == '|') {
- s >> v_tmp[VX] >> v_tmp[VY];
- while (s >> c && isspace(c)) ;
- if (c != '|')
- s.set(_bad);
- }
- else {
- s.putback(c);
- s >> v_tmp[VX] >> v_tmp[VY];
- }
- if (s)
- v = v_tmp;
- return s;
- }
-
- void swap(vec2& a, vec2& b)
- { vec2 tmp(a); a = b; b = tmp; }
-
- vec2 min(const vec2& a, const vec2& b)
- { return vec2(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY])); }
-
- vec2 max(const vec2& a, const vec2& b)
- { return vec2(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY])); }
-
- vec2 prod(const vec2& a, const vec2& b)
- { return vec2(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY]); }
-
- /****************************************************************
- * *
- * vec3 Member functions *
- * *
- ****************************************************************/
-
- // CONSTRUCTORS
-
- vec3::vec3() {}
-
- vec3::vec3(const double x, const double y, const double z)
- { n[VX] = x; n[VY] = y; n[VZ] = z; }
-
- vec3::vec3(const double d)
- { n[VX] = n[VY] = n[VZ] = d; }
-
- vec3::vec3(const vec3& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; }
-
- vec3::vec3(const vec2& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = 1.0; }
-
- vec3::vec3(const vec2& v, double d)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = d; }
-
- vec3::vec3(const vec4& v) // it is up to caller to avoid divide-by-zero
- { n[VX] = v.n[VX] / v.n[VW]; n[VY] = v.n[VY] / v.n[VW];
- n[VZ] = v.n[VZ] / v.n[VW]; }
-
- vec3::vec3(const vec4& v, int dropAxis) {
- switch (dropAxis) {
- case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
- case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
- case VZ: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VW]; break;
- default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; break;
- }
- }
-
-
- // ASSIGNMENT OPERATORS
-
- vec3& vec3::operator = (const vec3& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; return *this; }
-
- vec3& vec3::operator += ( const vec3& v )
- { n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; return *this; }
-
- vec3& vec3::operator -= ( const vec3& v )
- { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; return *this; }
-
- vec3& vec3::operator *= ( const double d )
- { n[VX] *= d; n[VY] *= d; n[VZ] *= d; return *this; }
-
- vec3& vec3::operator /= ( const double d )
- { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
- return *this; }
-
- double& vec3::operator [] ( int i) {
- if (i < VX || i > VZ)
- V_ERROR("vec3 [] operator: illegal access; index = " << i << '\n')
- return n[i];
- }
-
-
- // SPECIAL FUNCTIONS
-
- double vec3::length()
- { return sqrt(length2()); }
-
- double vec3::length2()
- { return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ]; }
-
- vec3& vec3::normalize() // it is up to caller to avoid divide-by-zero
- { *this /= length(); return *this; }
-
- vec3& vec3::apply(V_FCT_PTR fct)
- { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
- return *this; }
-
-
- // FRIENDS
-
- vec3 operator - (const vec3& a)
- { return vec3(-a.n[VX],-a.n[VY],-a.n[VZ]); }
-
- vec3 operator + (const vec3& a, const vec3& b)
- { return vec3(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ]); }
-
- vec3 operator - (const vec3& a, const vec3& b)
- { return vec3(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY], a.n[VZ]-b.n[VZ]); }
-
- vec3 operator * (const vec3& a, const double d)
- { return vec3(d*a.n[VX], d*a.n[VY], d*a.n[VZ]); }
-
- vec3 operator * (const double d, const vec3& a)
- { return a*d; }
-
- vec3 operator * (const mat4& a, const vec3& v)
- { return a * vec4(v); }
-
- vec3 operator * (const vec3& v, mat4& a)
- { return a.transpose() * v; }
-
- double operator * (const vec3& a, const vec3& b)
- { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ]); }
-
- vec3 operator / (const vec3& a, const double d)
- { double d_inv = 1./d; return vec3(a.n[VX]*d_inv, a.n[VY]*d_inv,
- a.n[VZ]*d_inv); }
-
- vec3 operator ^ (const vec3& a, const vec3& b) {
- return vec3(a.n[VY]*b.n[VZ] - a.n[VZ]*b.n[VY],
- a.n[VZ]*b.n[VX] - a.n[VX]*b.n[VZ],
- a.n[VX]*b.n[VY] - a.n[VY]*b.n[VX]);
- }
-
- int operator == (const vec3& a, const vec3& b)
- { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]);
- }
-
- int operator != (const vec3& a, const vec3& b)
- { return !(a == b); }
-
- ostream& operator << (ostream& s, vec3& v)
- { return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << " |"; }
-
- istream& operator >> (istream& s, vec3& v) {
- vec3 v_tmp;
- char c = ' ';
-
- while (isspace(c))
- s >> c;
- // The vectors can be formatted either as x y z or | x y z |
- if (c == '|') {
- s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
- while (s >> c && isspace(c)) ;
- if (c != '|')
- s.set(_bad);
- }
- else {
- s.putback(c);
- s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
- }
- if (s)
- v = v_tmp;
- return s;
- }
-
- void swap(vec3& a, vec3& b)
- { vec3 tmp(a); a = b; b = tmp; }
-
- vec3 min(const vec3& a, const vec3& b)
- { return vec3(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
- b.n[VZ])); }
-
- vec3 max(const vec3& a, const vec3& b)
- { return vec3(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
- b.n[VZ])); }
-
- vec3 prod(const vec3& a, const vec3& b)
- { return vec3(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ]); }
-
-
- /****************************************************************
- * *
- * vec4 Member functions *
- * *
- ****************************************************************/
-
- // CONSTRUCTORS
-
- vec4::vec4() {}
-
- vec4::vec4(const double x, const double y, const double z, const double w)
- { n[VX] = x; n[VY] = y; n[VZ] = z; n[VW] = w; }
-
- vec4::vec4(const double d)
- { n[VX] = n[VY] = n[VZ] = n[VW] = d; }
-
- vec4::vec4(const vec4& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW]; }
-
- vec4::vec4(const vec3& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = 1.0; }
-
- vec4::vec4(const vec3& v, const double d)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = d; }
-
-
- // ASSIGNMENT OPERATORS
-
- vec4& vec4::operator = (const vec4& v)
- { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW];
- return *this; }
-
- vec4& vec4::operator += ( const vec4& v )
- { n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; n[VW] += v.n[VW];
- return *this; }
-
- vec4& vec4::operator -= ( const vec4& v )
- { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; n[VW] -= v.n[VW];
- return *this; }
-
- vec4& vec4::operator *= ( const double d )
- { n[VX] *= d; n[VY] *= d; n[VZ] *= d; n[VW] *= d; return *this; }
-
- vec4& vec4::operator /= ( const double d )
- { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
- n[VW] *= d_inv; return *this; }
-
- double& vec4::operator [] ( int i) {
- if (i < VX || i > VW)
- V_ERROR("vec4 [] operator: illegal access; index = " << i << '\n')
- return n[i];
- }
-
-
- // SPECIAL FUNCTIONS
-
- double vec4::length()
- { return sqrt(length2()); }
-
- double vec4::length2()
- { return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ] + n[VW]*n[VW]; }
-
- vec4& vec4::normalize() // it is up to caller to avoid divide-by-zero
- { *this /= length(); return *this; }
-
- vec4& vec4::apply(V_FCT_PTR fct)
- { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
- n[VW] = (*fct)(n[VW]); return *this; }
-
-
- // FRIENDS
-
- vec4 operator - (const vec4& a)
- { return vec4(-a.n[VX],-a.n[VY],-a.n[VZ],-a.n[VW]); }
-
- vec4 operator + (const vec4& a, const vec4& b)
- { return vec4(a.n[VX] + b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ],
- a.n[VW] + b.n[VW]); }
-
- vec4 operator - (const vec4& a, const vec4& b)
- { return vec4(a.n[VX] - b.n[VX], a.n[VY] - b.n[VY], a.n[VZ] - b.n[VZ],
- a.n[VW] - b.n[VW]); }
-
- vec4 operator * (const vec4& a, const double d)
- { return vec4(d*a.n[VX], d*a.n[VY], d*a.n[VZ], d*a.n[VW] ); }
-
- vec4 operator * (const double d, const vec4& a)
- { return a*d; }
-
- vec4 operator * (const mat4& a, const vec4& v) {
- #define ROWCOL(i) a.v[i].n[0]*v.n[VX] + a.v[i].n[1]*v.n[VY] \
- + a.v[i].n[2]*v.n[VZ] + a.v[i].n[3]*v.n[VW]
- return vec4(ROWCOL(0), ROWCOL(1), ROWCOL(2), ROWCOL(3));
- #undef ROWCOL(i)
- }
-
- vec4 operator * (const vec4& v, mat4& a)
- { return a.transpose() * v; }
-
- double operator * (const vec4& a, const vec4& b)
- { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ] +
- a.n[VW]*b.n[VW]); }
-
- vec4 operator / (const vec4& a, const double d)
- { double d_inv = 1./d; return vec4(a.n[VX]*d_inv, a.n[VY]*d_inv, a.n[VZ]*d_inv,
- a.n[VW]*d_inv); }
-
- int operator == (const vec4& a, const vec4& b)
- { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ])
- && (a.n[VW] == b.n[VW]); }
-
- int operator != (const vec4& a, const vec4& b)
- { return !(a == b); }
-
- ostream& operator << (ostream& s, vec4& v)
- { return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << ' '
- << v.n[VW] << " |"; }
-
- istream& operator >> (istream& s, vec4& v) {
- vec4 v_tmp;
- char c = ' ';
-
- while (isspace(c))
- s >> c;
- // The vectors can be formatted either as x y z w or | x y z w |
- if (c == '|') {
- s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
- while (s >> c && isspace(c)) ;
- if (c != '|')
- s.set(_bad);
- }
- else {
- s.putback(c);
- s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
- }
- if (s)
- v = v_tmp;
- return s;
- }
-
- void swap(vec4& a, vec4& b)
- { vec4 tmp(a); a = b; b = tmp; }
-
- vec4 min(const vec4& a, const vec4& b)
- { return vec4(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
- b.n[VZ]), MIN(a.n[VW], b.n[VW])); }
-
- vec4 max(const vec4& a, const vec4& b)
- { return vec4(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
- b.n[VZ]), MAX(a.n[VW], b.n[VW])); }
-
- vec4 prod(const vec4& a, const vec4& b)
- { return vec4(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ],
- a.n[VW] * b.n[VW]); }
-
-
- /****************************************************************
- * *
- * mat3 member functions *
- * *
- ****************************************************************/
-
- // CONSTRUCTORS
-
- mat3::mat3() {}
-
- mat3::mat3(const vec3& v0, const vec3& v1, const vec3& v2)
- { v[0] = v0; v[1] = v1; v[2] = v2; }
-
- mat3::mat3(const double d)
- { v[0] = v[1] = v[2] = vec3(d); }
-
- mat3::mat3(const mat3& m)
- { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; }
-
-
- // ASSIGNMENT OPERATORS
-
- mat3& mat3::operator = ( const mat3& m )
- { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; return *this; }
-
- mat3& mat3::operator += ( const mat3& m )
- { v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; return *this; }
-
- mat3& mat3::operator -= ( const mat3& m )
- { v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; return *this; }
-
- mat3& mat3::operator *= ( const double d )
- { v[0] *= d; v[1] *= d; v[2] *= d; return *this; }
-
- mat3& mat3::operator /= ( const double d )
- { v[0] /= d; v[1] /= d; v[2] /= d; return *this; }
-
- vec3& mat3::operator [] ( int i) {
- if (i < VX || i > VZ)
- V_ERROR("mat3 [] operator: illegal access; index = " << i << '\n')
- return v[i];
- }
-
-
- // SPECIAL FUNCTIONS
-
- mat3 mat3::transpose() {
- return mat3(vec3(v[0][0], v[1][0], v[2][0]),
- vec3(v[0][1], v[1][1], v[2][1]),
- vec3(v[0][2], v[1][2], v[2][2]));
- }
-
- mat3 mat3::inverse() // Gauss-Jordan elimination with partial pivoting
- {
- mat3 a(*this), // As a evolves from original mat into identity
- b(identity2D()); // b evolves from identity into inverse(a)
- int i, j, i1;
-
- // Loop over cols of a from left to right, eliminating above and below diag
- for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2
- i1 = j; // Row with largest pivot candidate
- for (i=j+1; i<3; i++)
- if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
- i1 = i;
-
- // Swap rows i1 and j in a and b to put pivot on diagonal
- swap(a.v[i1], a.v[j]);
- swap(b.v[i1], b.v[j]);
-
- // Scale row j to have a unit diagonal
- if (a.v[j].n[j]==0.)
- V_ERROR("mat3::inverse: singular matrix; can't invert\n")
- b.v[j] /= a.v[j].n[j];
- a.v[j] /= a.v[j].n[j];
-
- // Eliminate off-diagonal elems in col j of a, doing identical ops to b
- for (i=0; i<3; i++)
- if (i!=j) {
- b.v[i] -= a.v[i].n[j]*b.v[j];
- a.v[i] -= a.v[i].n[j]*a.v[j];
- }
- }
- return b;
- }
-
- mat3& mat3::apply(V_FCT_PTR fct) {
- v[VX].apply(fct);
- v[VY].apply(fct);
- v[VZ].apply(fct);
- return *this;
- }
-
-
- // FRIENDS
-
- mat3 operator - (const mat3& a)
- { return mat3(-a.v[0], -a.v[1], -a.v[2]); }
-
- mat3 operator + (const mat3& a, const mat3& b)
- { return mat3(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2]); }
-
- mat3 operator - (const mat3& a, const mat3& b)
- { return mat3(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2]); }
-
- mat3 operator * (mat3& a, mat3& b) {
- #define ROWCOL(i, j) \
- a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + a.v[i].n[2]*b.v[2][j]
- return mat3(vec3(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)),
- vec3(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)),
- vec3(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)));
- #undef ROWCOL(i, j)
- }
-
- mat3 operator * (const mat3& a, const double d)
- { return mat3(a.v[0] * d, a.v[1] * d, a.v[2] * d); }
-
- mat3 operator * (const double d, const mat3& a)
- { return a*d; }
-
- mat3 operator / (const mat3& a, const double d)
- { return mat3(a.v[0] / d, a.v[1] / d, a.v[2] / d); }
-
- int operator == (const mat3& a, const mat3& b)
- { return (a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]); }
-
- int operator != (const mat3& a, const mat3& b)
- { return !(a == b); }
-
- ostream& operator << (ostream& s, mat3& m)
- { return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ]; }
-
- istream& operator >> (istream& s, mat3& m) {
- mat3 m_tmp;
-
- s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ];
- if (s)
- m = m_tmp;
- return s;
- }
-
- void swap(mat3& a, mat3& b)
- { mat3 tmp(a); a = b; b = tmp; }
-
-
- /****************************************************************
- * *
- * mat4 member functions *
- * *
- ****************************************************************/
-
- // CONSTRUCTORS
-
- mat4::mat4() {}
-
- mat4::mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3)
- { v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; }
-
- mat4::mat4(const double d)
- { v[0] = v[1] = v[2] = v[3] = vec4(d); }
-
- mat4::mat4(const mat4& m)
- { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; }
-
-
- // ASSIGNMENT OPERATORS
-
- mat4& mat4::operator = ( const mat4& m )
- { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3];
- return *this; }
-
- mat4& mat4::operator += ( const mat4& m )
- { v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; v[3] += m.v[3];
- return *this; }
-
- mat4& mat4::operator -= ( const mat4& m )
- { v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; v[3] -= m.v[3];
- return *this; }
-
- mat4& mat4::operator *= ( const double d )
- { v[0] *= d; v[1] *= d; v[2] *= d; v[3] *= d; return *this; }
-
- mat4& mat4::operator /= ( const double d )
- { v[0] /= d; v[1] /= d; v[2] /= d; v[3] /= d; return *this; }
-
- vec4& mat4::operator [] ( int i) {
- if (i < VX || i > VW)
- V_ERROR("mat4 [] operator: illegal access; index = " << i << '\n')
- return v[i];
- }
-
- // SPECIAL FUNCTIONS;
-
- mat4 mat4::transpose() {
- return mat4(vec4(v[0][0], v[1][0], v[2][0], v[3][0]),
- vec4(v[0][1], v[1][1], v[2][1], v[3][1]),
- vec4(v[0][2], v[1][2], v[2][2], v[3][2]),
- vec4(v[0][3], v[1][3], v[2][3], v[3][3]));
- }
-
- mat4 mat4::inverse() // Gauss-Jordan elimination with partial pivoting
- {
- mat4 a(*this), // As a evolves from original mat into identity
- b(identity3D()); // b evolves from identity into inverse(a)
- int i, j, i1;
-
- // Loop over cols of a from left to right, eliminating above and below diag
- for (j=0; j<4; j++) { // Find largest pivot in column j among rows j..3
- i1 = j; // Row with largest pivot candidate
- for (i=j+1; i<4; i++)
- if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
- i1 = i;
-
- // Swap rows i1 and j in a and b to put pivot on diagonal
- swap(a.v[i1], a.v[j]);
- swap(b.v[i1], b.v[j]);
-
- // Scale row j to have a unit diagonal
- if (a.v[j].n[j]==0.)
- V_ERROR("mat4::inverse: singular matrix; can't invert\n");
- b.v[j] /= a.v[j].n[j];
- a.v[j] /= a.v[j].n[j];
-
- // Eliminate off-diagonal elems in col j of a, doing identical ops to b
- for (i=0; i<4; i++)
- if (i!=j) {
- b.v[i] -= a.v[i].n[j]*b.v[j];
- a.v[i] -= a.v[i].n[j]*a.v[j];
- }
- }
- return b;
- }
-
- mat4& mat4::apply(V_FCT_PTR fct)
- { v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); v[VW].apply(fct);
- return *this; }
-
-
- // FRIENDS
-
- mat4 operator - (const mat4& a)
- { return mat4(-a.v[0], -a.v[1], -a.v[2], -a.v[3]); }
-
- mat4 operator + (const mat4& a, const mat4& b)
- { return mat4(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2],
- a.v[3] + b.v[3]);
- }
-
- mat4 operator - (const mat4& a, const mat4& b)
- { return mat4(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2], a.v[3] - b.v[3]); }
-
- mat4 operator * (mat4& a, mat4& b) {
- #define ROWCOL(i, j) a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + \
- a.v[i].n[2]*b.v[2][j] + a.v[i].n[3]*b.v[3][j]
- return mat4(
- vec4(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2), ROWCOL(0,3)),
- vec4(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2), ROWCOL(1,3)),
- vec4(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2), ROWCOL(2,3)),
- vec4(ROWCOL(3,0), ROWCOL(3,1), ROWCOL(3,2), ROWCOL(3,3))
- );
- }
-
- mat4 operator * (const mat4& a, const double d)
- { return mat4(a.v[0] * d, a.v[1] * d, a.v[2] * d, a.v[3] * d); }
-
- mat4 operator * (const double d, const mat4& a)
- { return a*d; }
-
- mat4 operator / (const mat4& a, const double d)
- { return mat4(a.v[0] / d, a.v[1] / d, a.v[2] / d, a.v[3] / d); }
-
- int operator == (const mat4& a, const mat4& b)
- { return ((a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]) &&
- (a.v[3] == b.v[3])); }
-
- int operator != (const mat4& a, const mat4& b)
- { return !(a == b); }
-
- ostream& operator << (ostream& s, mat4& m)
- { return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ] << '\n' << m.v[VW]; }
-
- istream& operator >> (istream& s, mat4& m)
- {
- mat4 m_tmp;
-
- s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ] >> m_tmp[VW];
- if (s)
- m = m_tmp;
- return s;
- }
-
- void swap(mat4& a, mat4& b)
- { mat4 tmp(a); a = b; b = tmp; }
-
-
- /****************************************************************
- * *
- * 2D functions and 3D functions *
- * *
- ****************************************************************/
-
- mat3 identity2D()
- { return mat3(vec3(1.0, 0.0, 0.0),
- vec3(0.0, 1.0, 0.0),
- vec3(0.0, 0.0, 1.0)); }
-
- mat3 translation2D(vec2& v)
- { return mat3(vec3(1.0, 0.0, v[VX]),
- vec3(0.0, 1.0, v[VY]),
- vec3(0.0, 0.0, 1.0)); }
-
- mat3 rotation2D(vec2& Center, const double angleDeg) {
- double angleRad = angleDeg * M_PI / 180.0,
- c = cos(angleRad),
- s = sin(angleRad);
-
- return mat3(vec3(c, -s, Center[VX] * (1.0-c) + Center[VY] * s),
- vec3(s, c, Center[VY] * (1.0-c) - Center[VX] * s),
- vec3(0.0, 0.0, 1.0));
- }
-
- mat3 scaling2D(vec2& scaleVector)
- { return mat3(vec3(scaleVector[VX], 0.0, 0.0),
- vec3(0.0, scaleVector[VY], 0.0),
- vec3(0.0, 0.0, 1.0)); }
-
- mat4 identity3D()
- { return mat4(vec4(1.0, 0.0, 0.0, 0.0),
- vec4(0.0, 1.0, 0.0, 0.0),
- vec4(0.0, 0.0, 1.0, 0.0),
- vec4(0.0, 0.0, 0.0, 1.0)); }
-
- mat4 translation3D(vec3& v)
- { return mat4(vec4(1.0, 0.0, 0.0, v[VX]),
- vec4(0.0, 1.0, 0.0, v[VY]),
- vec4(0.0, 0.0, 1.0, v[VZ]),
- vec4(0.0, 0.0, 0.0, 1.0)); }
-
- mat4 rotation3D(vec3& Axis, const double angleDeg) {
- double angleRad = angleDeg * M_PI / 180.0,
- c = cos(angleRad),
- s = sin(angleRad),
- t = 1.0 - c;
-
- Axis.normalize();
- return mat4(vec4(t * Axis[VX] * Axis[VX] + c,
- t * Axis[VX] * Axis[VY] - s * Axis[VZ],
- t * Axis[VX] * Axis[VZ] + s * Axis[VY],
- 0.0),
- vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ],
- t * Axis[VY] * Axis[VY] + c,
- t * Axis[VY] * Axis[VZ] - s * Axis[VX],
- 0.0),
- vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY],
- t * Axis[VY] * Axis[VZ] + s * Axis[VX],
- t * Axis[VZ] * Axis[VZ] + c,
- 0.0),
- vec4(0.0, 0.0, 0.0, 1.0));
- }
-
- mat4 scaling3D(vec3& scaleVector)
- { return mat4(vec4(scaleVector[VX], 0.0, 0.0, 0.0),
- vec4(0.0, scaleVector[VY], 0.0, 0.0),
- vec4(0.0, 0.0, scaleVector[VZ], 0.0),
- vec4(0.0, 0.0, 0.0, 1.0)); }
-
- mat4 perspective3D(const double d)
- { return mat4(vec4(1.0, 0.0, 0.0, 0.0),
- vec4(0.0, 1.0, 0.0, 0.0),
- vec4(0.0, 0.0, 1.0, 0.0),
- vec4(0.0, 0.0, 1.0/d, 0.0)); }
-